Skip to main content

Developer Blog | dbt Developer Hub

Find tutorials, product updates, and developer insights in the dbt Developer blog.

Start here

How we built consistent product launch metrics with the dbt Semantic Layer

· 9 min read
Jordan Stein

There’s nothing quite like the feeling of launching a new product. On launch day emotions can range from excitement, to fear, to accomplishment all in the same hour. Once the dust settles and the product is in the wild, the next thing the team needs to do is track how the product is doing. How many users do we have? How is performance looking? What features are customers using? How often? Answering these questions is vital to understanding the success of any product launch.

At dbt we recently made the Semantic Layer Generally Available. The Semantic Layer lets teams define business metrics centrally, in dbt, and access them in multiple analytics tools through our semantic layer APIs. I’m a Product Manager on the Semantic Layer team, and the launch of the Semantic Layer put our team in an interesting, somewhat “meta,” position: we need to understand how a product launch is doing, and the product we just launched is designed to make defining and consuming metrics much more efficient. It’s the perfect opportunity to put the semantic layer through its paces for product analytics. This blog post walks through the end-to-end process we used to set up product analytics for the dbt Semantic Layer using the dbt Semantic Layer.

Why you should specify a production environment in dbt Cloud

· 5 min read
Joel Labes
You can now specify a Staging environment too!

This blog post was written before dbt Cloud added full support for Staging environments. Now that they exist, you should mark your CI environment as Staging as well. Read more about Staging environments.

The Bottom Line:

You should split your Jobs across Environments in dbt Cloud based on their purposes (e.g. Production and Staging/CI) and set one environment as Production. This will improve your CI experience and enable you to use dbt Explorer.

Environmental segmentation has always been an important part of the analytics engineering workflow:

  • When developing new models you can process a smaller subset of your data by using target.name or an environment variable.
  • By building your production-grade models into a different schema and database, you can experiment in peace without being worried that your changes will accidentally impact downstream users.
  • Using dedicated credentials for production runs, instead of an analytics engineer's individual dev credentials, ensures that things don't break when that long-tenured employee finally hangs up their IDE.

Historically, dbt Cloud required a separate environment for Development, but was otherwise unopinionated in how you configured your account. This mostly just worked – as long as you didn't have anything more complex than a CI job mixed in with a couple of production jobs – because important constructs like deferral in CI and documentation were only ever tied to a single job.

But as companies' dbt deployments have grown more complex, it doesn't make sense to assume that a single job is enough anymore. We need to exchange a job-oriented strategy for a more mature and scalable environment-centric view of the world. To support this, a recent change in dbt Cloud enables project administrators to mark one of their environments as the Production environment, just as has long been possible for the Development environment.

Explicitly separating your Production workloads lets dbt Cloud be smarter with the metadata it creates, and is particularly important for two new features: dbt Explorer and the revised CI workflows.

To defer or to clone, that is the question

· 6 min read
Kshitij Aranke
Doug Beatty

Hi all, I’m Kshitij, a senior software engineer on the Core team at dbt Labs. One of the coolest moments of my career here thus far has been shipping the new dbt clone command as part of the dbt-core v1.6 release.

However, one of the questions I’ve received most frequently is guidance around “when” to clone that goes beyond the documentation on “how” to clone. In this blog post, I’ll attempt to provide this guidance by answering these FAQs:

  1. What is dbt clone?
  2. How is it different from deferral?
  3. Should I defer or should I clone?

Optimizing Materialized Views with dbt

· 11 min read
Amy Chen
note

This blog post was updated on December 18, 2023 to cover the support of MVs on dbt-bigquery and updates on how to test MVs.

Introduction

The year was 2020. I was a kitten-only household, and dbt Labs was still Fishtown Analytics. A enterprise customer I was working with, Jetblue, asked me for help running their dbt models every 2 minutes to meet a 5 minute SLA.

After getting over the initial terror, we talked through the use case and soon realized there was a better option. Together with my team, I created lambda views to meet the need.

Flash forward to 2023. I’m writing this as my giant dog snores next to me (don’t worry the cats have multiplied as well). Jetblue has outgrown lambda views due to performance constraints (a view can only be so performant) and we are at another milestone in dbt’s journey to support streaming. What. a. time.

Today we are announcing that we now support Materialized Views in dbt. So, what does that mean?

Create dbt Documentation and Tests 10x faster with ChatGPT

· 8 min read
Pedro Brito de Sa

Whether you are creating your pipelines into dbt for the first time or just adding a new model once in a while, good documentation and testing should always be a priority for you and your team. Why do we avoid it like the plague then? Because it’s a hassle having to write down each individual field, its description in layman terms and figure out what tests should be performed to ensure the data is fine and dandy. How can we make this process faster and less painful?

By now, everyone knows the wonders of the GPT models for code generation and pair programming so this shouldn’t come as a surprise. But ChatGPT really shines at inferring the context of verbosely named fields from database table schemas. So in this post I am going to help you 10x your documentation and testing speed by using ChatGPT to do most of the leg work for you.

Data Vault 2.0 with dbt Cloud

· 15 min read
Rastislav Zdechovan
Sean McIntyre

Data Vault 2.0 is a data modeling technique designed to help scale large data warehousing projects. It is a rigid, prescriptive system detailed vigorously in a book that has become the bible for this technique.

So why Data Vault? Have you experienced a data warehousing project with 50+ data sources, with 25+ data developers working on the same data platform, or data spanning 5+ years with two or more generations of source systems? If not, it might be hard to initially understand the benefits of Data Vault, and maybe Kimball modelling is better for you. But if you are in any of the situations listed, then this is the article for you!

Building a historical user segmentation model with dbt

· 14 min read
Santiago Jauregui

Introduction

Most data modeling approaches for customer segmentation are based on a wide table with user attributes. This table only stores the current attributes for each user, and is then loaded into the various SaaS platforms via Reverse ETL tools.

Take for example a Customer Experience (CX) team that uses Salesforce as a CRM. The users will create tickets to ask for assistance, and the CX team will start attending them in the order that they are created. This is a good first approach, but not a data driven one.

An improvement to this would be to prioritize the tickets based on the customer segment, answering our most valuable customers first. An Analytics Engineer can build a segmentation to identify the power users (for example with an RFM approach) and store it in the data warehouse. The Data Engineering team can then export that user attribute to the CRM, allowing the customer experience team to build rules on top of it.

Accelerate your documentation workflow: Generate docs for whole folders at once

· 9 min read
Mikael Thorup

At Lunar, most of our dbt models are sourcing from event-driven architecture. As an example, we have the following models for our activity_based_interest folder in our ingestion layer:

  • activity_based_interest_activated.sql
  • activity_based_interest_deactivated.sql
  • activity_based_interest_updated.sql
  • downgrade_interest_level_for_user.sql
  • set_inactive_interest_rate_after_july_1st_in_bec_for_user.sql
  • set_inactive_interest_rate_from_july_1st_in_bec_for_user.sql
  • set_interest_levels_from_june_1st_in_bec_for_user.sql

This results in a lot of the same columns (e.g. account_id) existing in different models, across different layers. This means I end up:

  1. Writing/copy-pasting the same documentation over and over again
  2. Halfway through, realizing I could improve the wording to make it easier to understand, and go back and update the .yml files I already did
  3. Realizing I made a syntax error in my .yml file, so I go back and fix it
  4. Realizing the columns are defined differently with different wording being used in other folders in our dbt project
  5. Reconsidering my choice of career and pray that a large language model will steal my job
  6. Considering if there’s a better way to be generating documentation used across different models

Modeling ragged time-varying hierarchies

· 18 min read
Sterling Paramore

This article covers an approach to handling time-varying ragged hierarchies in a dimensional model. These kinds of data structures are commonly found in manufacturing, where components of a product have both parents and children of arbitrary depth and those components may be replaced over the product's lifetime. The strategy described here simplifies many common types of analytical and reporting queries.

To help visualize this data, we're going to pretend we are a company that manufactures and rents out eBikes in a ride share application. When we build a bike, we keep track of the serial numbers of the components that make up the bike. Any time something breaks and needs to be replaced, we track the old parts that were removed and the new parts that were installed. We also precisely track the mileage accumulated on each of our bikes. Our primary analytical goal is to be able to report on the expected lifetime of each component, so we can prioritize improving that component and reduce costly maintenance.

Data engineers + dbt v1.5: Evolving the craft for scale

· 12 min read
Sung Won Chung
Kira Furuichi

I, Sung, entered the data industry by chance in Fall 2014. I was using this thing called audit command language (ACL) to automate debits equal credits for accounting analytics (yes, it’s as tedious as it sounds). I remember working my butt off in a hotel room in Des Moines, Iowa where the most interesting thing there was a Panda Express. It was late in the AM. I’m thinking about 2 am. And I took a step back and thought to myself, “Why am I working so hard for something that I just don’t care about with tools that hurt more than help?”

Why we're deprecating the dbt_metrics package

· 5 min read
Callum McCann

Hello, my dear data people.

If you haven’t read Nick & Roxi’s blog post about what’s coming in the future of the dbt Semantic Layer, I highly recommend you read through that, as it gives helpful context around what the future holds.

With that said, it has come time for us to bid adieu to our beloved dbt_metrics package. Upon the release of dbt-core v1.6 in late July, we will be deprecating support for the dbt_metrics package.

How we reduced a 6-hour runtime in Alteryx to 9 minutes with dbt and Snowflake

· 12 min read
Arthur Marcon
Lucas Bergo Dias
Christian van Bellen

Alteryx is a visual data transformation platform with a user-friendly interface and drag-and-drop tools. Nonetheless, Alteryx may have difficulties to cope with the complexity increase within an organization’s data pipeline, and it can become a suboptimal tool when companies start dealing with large and complex data transformations. In such cases, moving to dbt can be a natural step, since dbt is designed to manage complex data transformation pipelines in a scalable, efficient, and more explicit manner. Also, this transition involved migrating from on-premises SQL Server to Snowflake cloud computing. In this article, we describe the differences between Alteryx and dbt, and how we reduced a client's 6-hour runtime in Alteryx to 9 minutes with dbt and Snowflake at Indicium Tech.

Building a Kimball dimensional model with dbt

· 20 min read
Jonathan Neo

Dimensional modeling is one of many data modeling techniques that are used by data practitioners to organize and present data for analytics. Other data modeling techniques include Data Vault (DV), Third Normal Form (3NF), and One Big Table (OBT) to name a few.

Data modeling techniques on a normalization vs denormalization scaleData modeling techniques on a normalization vs denormalization scale

While the relevance of dimensional modeling has been debated by data practitioners, it is still one of the most widely adopted data modeling technique for analytics.

Despite its popularity, resources on how to create dimensional models using dbt remain scarce and lack detail. This tutorial aims to solve this by providing the definitive guide to dimensional modeling with dbt.

By the end of this tutorial, you will:

  • Understand dimensional modeling concepts
  • Set up a mock dbt project and database
  • Identify the business process to model
  • Identify the fact and dimension tables
  • Create the dimension tables
  • Create the fact table
  • Document the dimensional model relationships
  • Consume the dimensional model

dbt Squared: Leveraging dbt Core and dbt Cloud together at scale

· 12 min read
João Antunes
Yannick Misteli
Sean McIntyre

Teams thrive when each team member is provided with the tools that best complement and enhance their skills. You wouldn’t hand Cristiano Ronaldo a tennis racket and expect a perfect serve! At Roche, getting the right tools in the hands of our teammates was critical to our ability to grow our data team from 10 core engineers to over 100 contributors in just two years. We embraced both dbt Core and dbt Cloud at Roche (a dbt-squared solution, if you will!) to quickly scale our data platform.

The missing guide to debug() in dbt

· 7 min read
Benoit Perigaud

Editor's note—this post assumes intermediate knowledge of Jinja and macros development in dbt. For an introduction to Jinja in dbt check out the documentation and the free self-serve course on Jinja, Macros, Packages.

Jinja brings a lot of power to dbt, allowing us to use ref(), source() , conditional code, and macros. But, while Jinja brings flexibility, it also brings complexity, and like many times with code, things can run in expected ways.

The debug() macro in dbt is a great tool to have in the toolkit for someone writing a lot of Jinja code, but it might be difficult to understand how to use it and what benefits it brings.

Let’s dive into the last time I used debug() and how it helped me solve bugs in my code.

Audit_helper in dbt: Bringing data auditing to a higher level

· 15 min read
Arthur Marcon
Lucas Bergo Dias
Christian van Bellen

Auditing tables is a major part of analytics engineers’ daily tasks, especially when refactoring tables that were built using SQL Stored Procedures or Alteryx Workflows. In this article, we present how the audit_helper package can (as the name suggests) help the table auditing process to make sure a refactored model provides (pretty much) the same output as the original one, based on our experience using this package to support our clients at Indicium Tech®.

Tips and advice to study for, and pass, the dbt Certification exam

· 9 min read
Callie White
Jade Milaney

The new dbt Certification Program has been created by dbt Labs to codify the data development best practices that enable safe, confident, and impactful use of dbt. Taking the Certification allows dbt users to get recognized for the skills they’ve honed, and stand out to organizations seeking dbt expertise.

Over the last few months, Montreal Analytics, a full-stack data consultancy servicing organizations across North America, has had over 25 dbt Analytics Engineers become certified, earning them the 2022 dbt Platinum Certification award.

In this article, two Montreal Analytics consultants, Jade and Callie, discuss their experience in taking, and passing, the dbt Certification exam to help guide others looking to study for, and pass the exam.

How we cut our tests by 80% while increasing data quality: the power of aggregating test failures in dbt

· 8 min read
Noah Kennedy

Testing the quality of data in your warehouse is an important aspect in any mature data pipeline. One of the biggest blockers for developing a successful data quality pipeline is aggregating test failures and successes in an informational and actionable way. However, ensuring actionability can be challenging. If ignored, test failures can clog up a pipeline and create unactionable noise, rendering your testing infrastructure ineffective.

Power up your data quality with grouped checks

· 7 min read
Emily Riederer

Imagine you were responsible for monitoring the safety of a subway system. Where would you begin? Most likely, you'd start by thinking about the key risks like collision or derailment, contemplate what causal factors like scheduling software and track conditions might contribute to bad outcomes, and institute processes and metrics to detect if those situations arose. What you wouldn't do is blindly apply irrelevant industry standards like testing for problems with the landing gear (great for planes, irrelevant for trains) or obsessively worry about low probability events like accidental teleportation before you'd locked down the fundamentals. 

When thinking about real-world scenarios, we're naturally inclined to think about key risks and mechanistic causes. However, in the more abstract world of data, many of our data tests often gravitate towards one of two extremes: applying rote out-of-the-box tests (nulls, PK-FK relationships, etc.) from the world of traditional database management or playing with exciting new toys that promise to catch our wildest errors with anomaly detection and artificial intelligence. 

Between these two extremes lies a gap where human intelligence goes. Analytics engineers can create more effective tests by embedding their understanding of how the data was created, and especially how this data can go awry (a topic I've written about previously). While such expressive tests will be unique to our domain, modest tweaks to our mindset can help us implement them with our standard tools. This post demonstrates how the simple act of conducting tests by group can expand the universe of possible tests, boost the sensitivity of the existing suite, and help keep our data "on track". This feature is now available in dbt-utils